MPR-Diff: a Self-Supervised Diffusion Model for Multi-Planar Reformation in Prostate Micro-Ultrasound Imaging

Kaifeng Pang^{1,3}, Qi Miao¹, Alex Ling Yu Hung^{1,4}, Kai Zhao¹, Eunsun Oh¹, Raymi Ramirez¹, Wayne Brisbane², Kyunghyun Sung¹ ¹Department of Radiological Sciences ²Department of Urology ³Department of Electrical and Computer Engineering ⁴Department of Computer Science University of California, Los Angeles

Poster No. 1571074699

Introduction

- > Micro-ultrasound is a novel 29-MHz ultrasound imaging with low cost and $3-4 \times$ higher resolution than traditional ultrasound.
- > Acquisitions are fan-shaped with non-uniform angular intervals.
- > Multi-planar reformation (MPR) is crucial for joint evaluation with MRI, pathology, etc.
- > MPR is challenging due to low anterior resolution and discontinuity between adjacent slices.

Contributions

- > The first deep learning-based approach for micro-ultrasound MPR.
- A self-supervised learning strategy without the need for high-resolution ground truth.
- **Improved image quality**, validated by both quantitative metrics and expert reader studies.

Results

Quantitative Results

Method

Conditional DDPM

> Polar coordinate system: represent each voxel in the MPR plane using polar coordinates (θ, r) to reflect the fan-shaped acquisition. **Up-sampling strategy:** super-resolve low-resolution fan-shaped image $y \in \mathbb{R}^{H \times N}$ to $x \in \mathbb{R}^{H \times kN}$ with up-scaling factor k. **Conditional generation:** a DDPM is trained to generate the highquality image conditioned on the degraded image y, and the corresponding polar coordinates c.

> Best sharpness and perceptual quality!

Method	Sharpness [14] (×10 ²) \uparrow	PIQUE [15] ↓
Bilinear [3]	4.35	26.44
SwinIR [6]	4.36	26.24
SRConvNet [12]	4.39	25.18
MPR-Diff	4.44	19.47

Qualitative Comparison

Enhanced details and boundary of lesion!

Expert Reader Study

Self-supervised Training

- > No high-quality supervision: true high-resolution target-plane images are unavailable, making direct supervised training infeasible.
- > Patch-sampling training: simulate training pairs by randomly extracting LR and HR fan-shaped patches from the original plane.
- Simulated Acquisition Coordinates: use non-uniform angular coordinates $\{\tilde{\theta}^{lr}\}$ during sampling to mimic the realistic MicroUS acquisition patterns.

> Superior reader indicates p < 0.05)

Ablation Study

- \succ (a) remove the positional condition c.
- \succ (b) replace random sampling of $\{\tilde{\theta}^{lr}\}$ with uniform sampling.

LR (bilinear)

(a) w/o PC

MPR-Diff

David Geffen Health UCLA **School of Medicine**

Personal Lab website website

Conclusion and Discussion

- Improved delineation of prostate and lesions, enhancing the clinical value of MicroUS for prostate cancer diagnosis.
- > Limitation: DDPM suffers from long inference time, limiting practical use in volumetric reformation.
- > Future work: we are currently developing a single-step conditional consistency model-based approach – fast, stable and high-quality!

Acknowledgment

This research was funded in part by NIH R01-CA248506, NIHR01-CA272702, and the Integrated Diagnostics Program of the Departments of Radiological Sciences and Pathology in the UCLA David Geffen School of Medicine.

References

[1] Pensa, Jake, et al. "Evaluation of prostate cancer detection using micro-ultrasound versus mri through coregistration to whole-mount pathology," Sci. Rep., 2024. [2] Liang, Jingyun, et al. "Swinir: Image restoration using swin transformer," ICCV, 2021.

[3] Li, Feng, et al. "Srconvnet: A transformer-style convnet for lightweight image super-resolution," IJCV, 2024.